

INTERNATIONAL WORKSHOP ON APPLIED RECONFIGURABLE COMPUTING

INTERNATIONAL CONFERENCE

DELFT, THE NETHERLANDS, March 1 - 3, 2006

Evaluation of a Locomotion Algorithm for Worm-like Robots on FPGA-embedded processors

By Juan Gonzalez-Gomez, Ivan Gonzalez, Francisco Gomez-Arribas and Eduardo Boemo Computer Engineering School, Universidad Autonoma de Madrid (Spain)

E-mail: Juan.Gonzalez@uam.es

In this paper, a locomotion algorithm designed for an eight modules worm-like robot has been successfully tested on three different FPGA-embedded processors: MicroBlaze, PowerPC and LEON2. The locomotion of worm-like robots, composed of a chain of equal linked modules, is achieved by means of wave propagation that traverse the body of the worm. The time the robot needs to generate a new motion wave, also known as the gait recalculation time, is the key to achieve an autonomous robot with real-time reactions. Algorithm execution time for four different architectures, as a function of the total number of articulations of the robot, are presented. The results show that a huge improvement of the gait recalculation time can be achieved by using a float point unit. The performance achieved using the LEON2 with FPU is 40 times better than LEON2 without FPU, using only 6% of additional resources.

2

"Cube Revolutions": the worm-like robot

- It is composed of 8 similar linked Y1 modules
- · The modules are connected in the same orientation
- · The robot only can move forward or backward · The electronic and power supply are located off-board

$\varphi(t_i) = [\varphi_1 \ \varphi_2 \ \varphi_3 \ \varphi_4 \ \varphi_5 \ \varphi_6]$

Angular position vector

Locomotion Algorithm

•The shape of the robot at instant ti is described by the angular position vector

•The sequence of movement is characterized by a Matrix, which rows are the angular position vectors at

•The locomotion algorithm calculates this matrix, based on the propagation of waves along the body of the robot

· The algorithm operates as follows:

•Step 1: The articulation's angles are wave.

·Step 2: The wave is shifted

•Step 3: The worm is fitted to the wave again

*Steps 2 and 3 are repeated until the wave has moved a distance equal to the wavelength

4

Architectures used for the evaluation of the algorithm

Target architectures	Processor	Frequency	FPGA
1	LEON	25Mhz	Virtex XC2000E
2	LEON + FPU		
3	MicroBlaze	50Mhz	
4a	PowerPC	SUIVINZ	Virtex II Pro
4b	PowerPC	100Mhz	

Synthesis results:

Implementation on FPGA

Processor	Slices	BRAM
MicroBlaze	1321 (6%)	74 (46%)
LEON	4883(25%)	43 (26%)
LEON + Meiko FPU	6064 (31%)	40 (25%)

Algorithm execution time Normalized results supposing a 50Mhz system clock frequency Time (sec

5

Conclusions and future work

- · The locomotion algorithm for worm-like robots locomotion has been tested on four different architectures
- The gait reconfiguration time (GRT) can be drastically improved by means of the use of and FPU unit
- · A 25 Mhz LEON2 with an Meiko FPU is almost one order of magnitude faster than a PowerPC working at 100Mhz
- of the MicroBlaze is a good solution.
- It saves about the 75% of the area, leaving this percentage free for the implementation of new hardware cores
- For further work, the architecture chosen is the LEON2 + FPU.
- The locomotion on 2D problem (2D) has to be solved.
- The same algorithm will be used but using two waves: one for the joints in the plane parallel to the ground and the other for the joints in the perpendicular
- · The final locomotion will be generated as a composition of the two waves

